Hypercontractivity of Hamilton–jacobi Equations

نویسندگان

  • Sergey G. BOBKOV
  • Ivan GENTIL
  • Michel LEDOUX
چکیده

– Following the equivalence between logarithmic Sobolev inequalities and hypercontractivity showed by L. Gross, we prove that logarithmic Sobolev inequalities are related similarly to hypercontractivity of solutions of Hamilton–Jacobi equations. By the infimum-convolution description of the Hamilton–Jacobi solutions, this approach provides a clear view of the connection between logarithmic Sobolev inequalities and transportation cost inequalities investigated recently by F. Otto and C. Villani. In particular, we recover in this way transportation from Brunn–Minkowski inequalities and for the exponential measure.  2001 Éditions scientifiques et médicales Elsevier SAS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultracontractive bounds on Hamilton–Jacobi solutions

Following the equivalence between logarithmic Sobolev inequality, hypercontractivity of the heat semigroup showed by Gross and hypercontractivity of Hamilton–Jacobi equations, we prove, like the Varopoulos theorem, the equivalence between Euclidean-type Sobolev inequality and an ultracontractive control of the Hamilton–Jacobi equations. We obtain also ultracontractive estimations under general ...

متن کامل

Nonlinear diffusions, hypercontractivity and the optimal L-Euclidean logarithmic Sobolev inequality

The equation ut = ∆p(u 1/(p−1)) for p > 1 is a nonlinear generalization of the heat equation which is also homogeneous, of degree 1. For large time asymptotics, its links with the optimal Lp-Euclidean logarithmic Sobolev inequality have recently been investigated. Here we focuse on the existence and the uniqueness of the solutions to the Cauchy problem and on the regularization properties (hype...

متن کامل

Generating functions of multi-symplectic RK methods via DW Hamilton-Jacobi equations

In this paper we investigate Donder-Weyl (DW) Hamilton-Jacobi equations and establish the connection between DW Hamilton-Jacobi equations and multi-symplectic Hamiltonian systems. Based on the study of DW Hamilton-Jacobi equations, we present the generating functions for multi-symplectic partitioned Runge-Kutta (PRK) methods.

متن کامل

Asymptotic Solutions of Hamilton-Jacobi Equations with State Constraints

We study Hamilton-Jacobi equations in a bounded domain with the state constraint boundary condition. We establish a general convergence result for viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations with the state constraint boundary condition to asymptotic solutions as time goes to infinity.

متن کامل

Uniqueness for unbounded solutions to stationary viscous Hamilton–Jacobi equations

We consider a class of stationary viscous Hamilton–Jacobi equations as

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000